Rossby wave breaking and transient eddy forcing during Euro-Atlantic circulation regimes

Part of broader collaborative work with Gang Chen (UCLA), Jian Lu (PNNL) and L. R. Leung (PNNL)

Motivation

- Rossby wave breaking (RWB) evident in overturning of potential vorticity (PV)
 near the tropopause
- RWB plays a crucial role in reorganizing transient eddies whose fluxes trigger/ reinforce persistent changes in large-scale circulation
- The relative roles of cyclonic (CWB) and anticyclonic wave breaking (AWB)
 have yet to be quantified in terms of the full 3-D baroclinic transient eddy
 forcing (momentum and heat fluxes)
- We estimate the roles of CWB and AWB for the development of different Euro-Atlantic circulation regimes, as well as examine how well this is simulated in seasonal re-forecasts (and whether or not horizontal resolution is important)

Unique Data Set of ECMWF Model Simulations and Reforecasts

Minerva Project

Atmospheric Model (IFS) coupled to NEMO Ocean Model (1.0 →0.33 deg, 24 L)

Ensemble Reforecasts with 01 Nov. Start Dates

16 Nov. – 31 March analyzed

Resolution	Delta λ, Δx	Years	Ens. Size
T319 L91	0.56°, 62 km	1980-2010	15
T639 L91	0.28°, 31 km	1980-2010	15
T1279 L91	0.14°, 16 km	1980-2010	15

Observational analysis: ERA Interim Reanalysis (ERAI)

RWB detection

- Overturning of Ertel PV at 330 K or 315 K (Strong & Magnusdottir 2008)
- Gradient constraint
- Spatial scale constraint
- Partition according to direction of overturning (CWB or AWB)

RWB role estimation

- Given *R*, radius of circle with same area as that of wave breaking event, fields within 4*R* of event centroid are considered related

CWB: easterlies (jet weakening)

AWB: dipole (poleward shift)

Impact of transient eddies

 \rightarrow local EP flux divergence ($\nabla \cdot E$)

- Time mean zonal wind tendency

Composite of all CWB and AWB events in ERAI

$$\nabla \cdot \boldsymbol{E} = \left[\frac{\cos \phi}{2} \frac{\partial}{\partial x} (\overline{v'^2} - \overline{u'^2}) - \frac{\partial}{\partial y} (\overline{u'v'} \cos \phi) \right] + \left[-\cos \phi \frac{\partial}{\partial p} (R_d f p \frac{\overline{v'T'}}{S} + \overline{u'\omega'}) \right]$$

momentum flux

heat flux

- Neglects low frequency terms, diabatic heating, friction

Climatological frequency of CWB and AWB

 Maxima simulated well; increasing resolution does not improve frequency of CWB and AWB; if anything, T319 (~62 km) is most realistic

Euro-Atlantic circulation regimes

- Identified through k-means cluster analysis of 500 hPa geopotential height (Z500)
- Scandinavian Blocking,
 Atlantic Ridge, NAO+, NAO-
- Highly reproducible in all Minerva re-forecasts

ERA Interim NAO+

- Jet extension
- Reduction in CWB, poleward shift in AWB
- During development, jet extension in E. Atl. occurs during AWB and is reinforced by transient eddies (positive $\nabla \bullet E$)

Developmental phase defined when anomalous Z500 has increasing pattern correlation with NAO+ cluster pattern

ERA Interim NAO+

Zonal average over E. Atl./W. Europe (20° W to 40° E)

- Jet extension/poleward shift (shading) normally linked to AWB
- During AWB, maxima in transient heat flux (**v'T'**) at 850 hPa and 200 hPa
- Reinforces westerlies via $\nabla \bullet E_V$ as much as $\nabla \bullet E_H$ (momentum fluxes)
- Enhanced substantially during NAO+ development

dU/dt (shading); contours: v'T', $\nabla \bullet E_H$, $\nabla \bullet E_V$

Minerva T1279 NAO+

Zonal average over E. Atl./W. Europe (20° W to 40° E)

- Simulated fairly well in Minerva T1279
- Frequency of CWB and AWB simulated quite well (not shown)
- Slightly weaker transient eddy activity → weaker role of AWB during NAO+ development
- Consistent with weaker simulated NAO+ zonal wind anomalies

dU/dt (shading); contours: v'T', $\nabla \bullet E_H$, $\nabla \bullet E_V$

Further results

- Changes in CWB and AWB during various regimes consistent with Michel & Rivière
- Large increase in CWB during NAO- when CWB plays dominant role (low-level transient heat fluxes in the W. Atl. seem to be important)
- Ridge growth is coincident with AWB during the development of Scandinavian Blocking and Atlantic Ridge regimes, however the AWB-associated transient eddy fluxes actually work against it; other factors must be important

Swenson, E. T., and D. M. Straus, 2017: Rossby wave breaking and transient eddy forcing during Euro-Atlantic circulation regimes. *J. Atmos. Sci., in press.*

Thank you!

